本書以“深海耐壓球殼基礎(chǔ)理論和關(guān)鍵技術(shù)”為題,對深海耐壓球殼的設(shè)計制造和分析技術(shù)的研究背景和發(fā)展、影響深海耐壓球殼強度和長期使用安全性的基礎(chǔ)理論和關(guān)鍵技術(shù),以及對深海耐壓球殼考核驗證和數(shù)值仿真方法進行了詳細介紹,著重闡釋了基于耐壓球殼備選材料綜合性能的選材標準、耐壓球殼線性和非線性屈曲理論基礎(chǔ)及計算方法,以及用于耐壓球殼蠕變疲勞壽命預(yù)報的裂紋擴展率模型。&...
本書以“深海耐壓球殼基礎(chǔ)理論和關(guān)鍵技術(shù)”為題,對深海耐壓球殼的設(shè)計制造和分析技術(shù)的研究背景和發(fā)展、影響深海耐壓球殼強度和長期使用安全性的基礎(chǔ)理論和關(guān)鍵技術(shù),以及對深海耐壓球殼考核驗證和數(shù)值仿真方法進行了詳細介紹,著重闡釋了基于耐壓球殼備選材料綜合性能的選材標準、耐壓球殼線性和非線性屈曲理論基礎(chǔ)及計算方法,以及用于耐壓球殼蠕變疲勞壽命預(yù)報的裂紋擴展率模型。
在此基礎(chǔ)上,對深海耐壓球殼的評價、試驗和仿真方法的經(jīng)驗積累進行了總結(jié)。其中,團隊創(chuàng)新性提出的考慮保持載荷效應(yīng)的小時間域裂紋擴展模型、超高強度鋼耐壓艙極限承載能力評估模型、覆蓋全海深的耐壓艙設(shè)計與分析系統(tǒng),填補了國內(nèi)外相關(guān)研究的空白,拓展了深海裝備前沿技術(shù)的理論體系,具有重要的學(xué)術(shù)價值。
目 錄
Chapter 1 General Introduction of Deep-sea Spherical Pressure Hulls 1
1.1Application scenario of deep-sea spherical pressure hulls 2
1.2 The design methodology of deep-sea pressure hull 6
1.2.1 Shape selection 6
1.2.2 Material selection 8
1.2.3 Hull thickness requirement based on the depth limit and safety factor 9
1.2.4 End closures design compatible with the hull and design requirement 9
1.3 Other considerations to ensure safety 10
1.3.1 Reliability 10
1.3.2 Fatigue and fracture 12
1.3.3 Model test 14
1.3.4 Seal design 16
1.4 Manufacturing process of deep-sea pressure hulls 17
References 21
Chapter 2 Material Selection for Deep-sea Spherical Pressure Hulls 23
2.1 Candidate materials for deep-sea spherical pressure hulls 24
2.1.1 Steels 26
2.1.2 Aluminium alloys 28
2.1.3 Titanium alloys 28
2.1.4 Acrylic plastics (polymethyl methacrylate) 29 2.1.5
Composites 30
2.2 Practice for material selection 31
2.2.1 Selection of titanium alloys 33
2.2.2 Selection of maraging steels 44
References 50
Chapter 3 Linear Buckling Mechanics of Deep-sea Spherical Pressure Hulls 53
3.1 Overview of current rules for spherical pressure hulls 53
3.1.1 Introduction of rules 53
3.1.2 Comparison of rules 59
3.2 Analytical analysis 62
3.2.1 Strength evaluation 62
3.2.2 Stability evaluation 69
3.3 Numerical analysis 76
3.3.1 Brief introduction of FEM principle 76
3.3.2 Numerical study of different methods 82
References 92
Chapter 4 Nonlinear Buckling of Deep-sea Spherical Pressure Hulls 94
4.1 Overview of current studies 94
4.1.1 Empirical formulae 94
4.1.2 Phenomenological models 104
4.2 Elastic-plastic buckling analysis 107
4.2.1 Titanium alloy spherical pressure hulls 107
4.2.2 Maraging steel spherical pressure hulls 124
4.3 Experimental study in laboratory scale 127
4.3.1 Materials and methods 128
4.3.2 Results and discussion 132
References 143
Chapter 5 Fatigue Life Assessment Theory for Deep-sea Spherical Pressure Hulls 146
5.1 Analysis methods for fatigue of spherical pressure hulls 147
5.1.1 Loading history of the spherical pressure hull 148
5.1.2 Low-cycle fatigue theory based on strain-cycles curve 152
5.1.3 Methods based on crack growth theory 158
5.1.4 A simplified life estimation method 185 References 192
Chapter 6 Testing and Numerical Simulation of Deep-sea Spherical Pressure Hulls 195
6.1 Verification testing 197
6.1.1 Ultimate compression-carrying capacity testing for scale model 198
6.1.2 Hydrostatic pressure testing for viewports 207
6.1.3 Function testing for hatch-cover opening and closing mechanism 209
6.2 Inspection testing 210
6.2.1 Material properties testing 210
6.2.2 Geometrical size measurement 213
6.3 Acceptance testing 214
6.3.1 Leakage testing 214
6.3.2 Hydrostatic pressure testing 215
6.4 Numerical Simulation 216
6.4.1 Structural strength calculation of the deep-sea spherical pressure hull using FEA method 216
6.4.2 Numerical simulation on collapse of the deep-sea spherical pressure hull 221
6.4.3 The simulation of transient dynamic process of crushing 226
References 233